
wintellect.com consulting training design debugging

Intro to Jounce

Rik Robinson

Senior Consultant

rrobinson@wintellect.com
Copyright © 2011

wintellect.com consulting training design debugging

Founded by top experts on Microsoft – Jeffrey Richter, Jeff Prosise, and John Robbins –

we pull out all the stops to help our customers achieve their goals through advanced

software-based consulting and training solutions.

Consulting & Debugging
• Architecture, analysis, and design services

• Full lifecycle custom software development

• Content creation

• Project management

• Debugging & performance tuning

Training
• On-site instructor-led training

• Virtual instructor-led training

• Devscovery conferences

Design
• User Experience Design

• Visual & Content Design

• Video & Animation Production

what we do

who we are

how we do it

consulting training debugging design

wintellect.com consulting training design debugging

Jounce is a reference framework for Silverlight intended to

provide guidance for building modular line of business

applications that follow the MVVM pattern and utilize the

Managed Extensibility Framework (MEF).

- CodePlex

What is Jounce?

http://jounce.codeplex.com/
http://jounce.codeplex.com/
http://jounce.codeplex.com/
http://jounce.codeplex.com/
http://jounce.codeplex.com/

wintellect.com consulting training design debugging

• Open source available on CodePlex

– Good documentation

– Lots of QuickStart sample applications

– Jounce Visual Studio Project Template

• Silverlight only (not WP7 or WPF)

• Less than 1000 lines of code

• Packaged in Jounce.dll

• Lighter weight than Prism

• Direct and explicit dependency on MEF

Jounce Notes

wintellect.com consulting training design debugging

• Standardized way to expose and consume

components

• Wires components together in the correct order

• Flexible discovery of components

• Metadata provides for rich querying and filtering

• Assists with lifetime management of components

• It’s part of the framework!
– System.ComponentModel.Composition

Why MEF?

wintellect.com consulting training design debugging

• Easy wiring of Views and ViewModels

• Allows for communication between ViewModels

• Compose / Consume messages on the fly

• Seamless use of dynamic XAP files

• Simple Navigation

• Region Management

• Commands

• Logging / Tracing

• ViewModels with CRUD / Validation

• Asynchronous Workflow

What does Jounce do for us?

wintellect.com consulting training design debugging

• To plug into Silverlight application lifecycle

– Remove all of the default code in your App.Xaml.cs

– Add this code to App.Xaml

Application Service

<Application …
 xmlns:Services=“namespace:Jounce.Framework.Services” …>

 <Application.ApplicationLifetimeObjects>
 <Services:ApplicationService>
 </Application.ApplicationLifetimeObjects>

</Application>

wintellect.com consulting training design debugging

• Creates and wires a “Jouncified” IApplicationService object to handle

the Application lifecycle

• Creates a default AggregateCatalog

• Creates the CompositionContainer

• Adds MEFDebugger to help with debugging

• Creates a Logger and sets a default level of logging (configurable)

• Creates a ViewModelRouter

• Creates a Deployment Service

• Maintains a collection for Views

• Creates an EventAggregator for subscription to Exceptions

• Provides numerous hooks via Exited/Exiting/Started/Starting

Application Service

wintellect.com

demo

consulting training design debugging

Getting started

wintellect.com consulting training design debugging

• Tag the View class with ExportAsView attribute

• Tags must be unique

• Use constants instead of magic strings for View tag

• Can export using typeof() instead of string

• Mark only one View as IsShell = true

• Additional properties available in ExportAsView

– Category, MenuName, ToolTip

Tagging a View

[ExportAsView(“Welcome”, IsShell = true)]
public partial class WelcomeView { … }

[ExportAsView(typeof(WelcomeView))]
public partial class WelcomeView { … }

wintellect.com consulting training design debugging

• Tag the ViewModel class with ExportAsViewModel

attribute

• Tags must be unique

• Use constants instead of magic strings for ViewModel tag

• Can export using typeof() instead of string

• ViewModels can be bound to multiple Views

Tagging a ViewModel

[ExportAsViewModel(“WelcomeViewModel”)]
public partial class WelcomeViewModel : BaseViewModel { … }

[ExportAsViewModel(typeof(WelcomeViewModel))]
public partial class WelcomeViewModel : BaseViewModel { … }

wintellect.com consulting training design debugging

• Imports the EventAggregator, Logger, and ViewModelRouter

• Visual State Management

– Allows setting of Visual State in Views from ViewModel

– GoToVisualState()

– GoToVisualStateForView()

• Design-time awareness via InDesigner property

– Generally checked in constructor to wire design-time data

• Awareness of binding/activation events

– Initialize() – called first time ViewModel is created

– Activate() – called whenever a view is navigated to

– Deactivate() – called whenever a view is navigated from

BaseViewModel

wintellect.com consulting training design debugging

• BaseViewModel imports a Router property

• Provides programmatic access to ViewModels

ViewModelRouter

 var viewModel = Router.ResolveViewModel(“WelcomeVM”);

• Do not call the Router from ViewModel’s constructor

Instead implement IPartImportsSatisfiedNotification and call from

OnImportsSatisfied() to assure Router has been wired by MEF

wintellect.com consulting training design debugging

Export a ViewModelRoute for each combination of ViewModel and View

Binding View to ViewModel

[Export]
public ViewModelRoute Binding
{
 return ViewModelRoute.Create(“WelcomeVM”, “Welcome”);
}

Export a ViewModel for a View at runtime

Router.RouteViewModelForView(“WelcomeVM”, “Welcome”);

Router.RouteViewModelForView<WelcomeViewModel, ShellView>();

wintellect.com consulting training design debugging

ViewModelRouter provides methods for creating non-shared

Views and ViewModels

Non-Shared Views and VMs

var view = Router.GetNonSharedView(“WelcomeView”, null);

View

var viewModel = Router.GetNonSharedViewModel(“WelcomeVM”);

ViewModel

Pass ViewModel here and

Jounce will wire

wintellect.com

demo

consulting training design debugging

Views and ViewModels

wintellect.com consulting training design debugging

• Use for view models that need CRUD operations and/or validation

• Derived from BaseViewModel

• Implements INotifyDataErrorInfo interface to allow hooks into

Silverlight’s built-in validation framework

• Override ValidateAll() to provide aggregate validation

• Committed boolean

– Inverse dirty flag

– Should be initialized to true

• CommitCommand – bind to Save buttons to automatically disable

unless record is both dirty and passes all validations

• OnCommit – called when commit command is executed

• HasErrors property will be true if there are errors

BaseEntityViewModel

wintellect.com consulting training design debugging

Validation – Field Level

public string FirstName
{
 get { return _firstName; }
 set
 {
 // other setter stuff goes here
 ValidateName(ExtractPropertyName(() => FirstName, value));
 }
}

private void ValidateName(string propertyName, string value)
{
 ClearErrors(propertyName);

 if (string.IsNullOrEmpty(value))
 SetError(propertyName, “The field is required”);
}

Don’t forget to clear errors

wintellect.com consulting training design debugging

Validation – Aggregate

protected override void ValidateAll()
{
 ValidatePhoneNumber();
 ValidateEmail();
 PingServer();
}

• Override the ValidateAll method

• Place validations in ValidateAll that involve multiple fields

or are server-based

• ValidateAll is called by Jounce before any commit

command is processed

wintellect.com consulting training design debugging

• Loosely coupled way to bind the UI to the logic that performs

the action

• Command is exposed as a property of the ViewModel

• Jounce provides the ActionCommand

• CanExecute
– Automatic enable/disable for buttons

Commands

public IActionCommand<MyClass> SaveCommand { get; private set; }

// to create
SaveCommand = new ActionCommand<MyClass>(
 entity => Service.Save(entity),
 entity => IsValid(entity)
);

wintellect.com

demo

consulting training design debugging

BaseEntityViewModel and Validation

wintellect.com consulting training design debugging

• Jounce provides EventAggregator for messaging

• Single source that can publish and provide subscriptions

• Any message T can be sent

• To publish a null, specify the type and send null

Event Aggregation

EventAggregator.Publish<MyMessage>(null);

• For subscriptions

– The entity that handles message must implement IEventSink<T>

wintellect.com consulting training design debugging

Import the EventAggregator

Event Aggregation

[Import]
public IEventAggregator EventAggregator { get; set; }

Publish

EventAggregator.Publish(“A message of type string”);

Subscribe

EventAggregator.Subscribe<string>(this);

wintellect.com consulting training design debugging

Simple Navigation

• Finds or creates the View

• Binds the View to the ViewModel

• Calls Initialize and/or Activate on the ViewModel

• Publishes the ViewNavigatedArgs message once complete

• Use NavigationTrigger behavior to fire navigation events in

XAML

• AddNamedParameter extension method allows passing of

payload on Publish

• AsNavigationArgs extension method available for Views

EventAggregator.Publish(new ViewNavigationArgs(“MyView”));

wintellect.com consulting training design debugging

• ViewNavigationArgs

₋ Raised to notify Jounce that a View is changing its View status

₋ Just publish a ViewNavigationArgs message to fire a navigation

₋ Set Deactivate flag to indicate activate/deactivate

• ViewNavigatedArgs

₋ Fired at the conclusion of a Navigation event

₋ Subscribe to ViewNavigatedArgs message to be notified of

Navigation

₋ Used by Region Manager for region management

Simple Navigation

wintellect.com consulting training design debugging

Regions

• Regions can be ContentControl, ItemsControl, TabControl

• Create custom Region types via RegionAdapterBase

• Regions indicated by RegionName attached property

<ContentControl Regions:ExportAsRegion.RegionName=“MainRegion” />

[ExportAsView(“MyView”)]
[ExportViewToRegion(“MyView”, “MainRegion”)]
public partial class MyView
{
}

MyView.xaml

MyView.xaml.cs

wintellect.com

demo

consulting training design debugging

Simple Navigation

wintellect.com consulting training design debugging

• ViewXapRoute - tells Jounce that a particular class can be found in a

specific XAP

• Jounce dynamically loads the XAP the first time the View is requested

• To explicitly load a XAP use Deployment.RequestXap()

• Set Copy Local = false for Jounce reference in dynamic modules

• Implement IModuleInitializer to hook into Initialized/Initialize events

Binding Views to XAP files

[Export]
public ViewXapRoute ExtrasRoute
{
 get
 {
 return ViewXapRoute.Create(“Extras”, “MyApp.Extras.xap”);
 }
}

wintellect.com

demo

consulting training design debugging

Dynamic XAP

wintellect.com consulting training design debugging

• Jounce provides ILogger

• MEFDebugger class implements ILogger and writes to the

debug console

• By default, ApplicationService creates a MEFDebugger

• ILogger.Log allows various levels of SeverityLevel

– Verbose, Information, Warning, Error, Critical

• To implement ILogger, declare a class and export the ILogger

Logging

[Export(typeof(ILogger))]
public MyLogger : ILogger
{
}

wintellect.com consulting training design debugging

• BaseViewModel provides InDesigner boolean to test

• Test InDesigner property before making calls to services or

other dependencies that would not be available at design

time

• Numerous ways to keep the solution “Blendable”

– Create separate DesignTimeViewModel and use d:DataContext

– Conditional compilation directives that use separate classes and/or

methods to create sample data

– Blend can create some basic sample data, but doesn’t hold up with

nested collections of complex objects

Design-Time Data

wintellect.com consulting training design debugging

• Allows firing of asynchronous processes in a sequential

fashion

• Defined by the IWorkflow interface

• Several IWorkFlow implementations included

– WorkflowAction, WorkflowBackgroundWorker, etc.

• Relies on C# iterators

• To create a Workflow, chain together a series of IWorkflow

nodes using an enumerable method

• Use WorkflowController.Begin to start the process

Workflows

wintellect.com

demo

consulting training design debugging

Workflows

wintellect.com consulting training design debugging

• Easy wiring of Views and ViewModels

• Allows for communication between ViewModels

• Compose / Consume messages on the fly

• Seamless use of dynamic XAP files

• Simple Navigation

• Region Management

• Commands

• Tracing / Logging

• ViewModels with CRUD / Validation

• Asynchronous Workflow

Jounce Summary

wintellect.com consulting training design debugging

• Jounce on CodePlex

– jounce.codeplex.com

• Jeremy Likness (Author of Jounce)

– @JeremyLikness

– csharperimage.jeremylikness.com

Resources Slide

http://jounce.codeplex.com/
http://cid-f8b2fd72406fb218.skydrive.live.com/self.aspx/blog/Composition.Initialization.Desktop.zip?wa=wsignin1.0&sa=704425757
http://csharperimage.jeremylikness.com/
http://csharperimage.jeremylikness.com/
http://csharperimage.jeremylikness.com/
http://csharperimage.jeremylikness.com/

wintellect.com

Questions?

consulting training design debugging

Rik Robinson

Senior Consultant

rrobinson@wintellect.com

